An electron is moving round the nucleus of a hydrogen atom in a
circular orbit of radius r. The Coulomb force \( \vec{F} \) between the two
is ___ ?
\( \left( \text{where } K = \frac{1}{4\pi \varepsilon_0} \right)
\)
\( \text{(a)} \quad K \frac{e^2}{r^3} \vec{r} \)
\( \text{(b)} \quad K \frac{e^2}{r^2} \hat{r} \)
\( \text{(c)} \quad -K \frac{e^2}{r^3} \hat{r} \)
\( \text{(d)} \quad -K \frac{e^2}{r^3} \vec{r} \)
Answer : \( \text{(d)} \quad -K \frac{e^2}{r^3} \vec{r} \)
Concept: Relation between a vector, its magnitude and the unit vector needs to be understood. \( \vec{r} = r \hat{r} \)
\( F = K \frac{q_1 q_2}{r^2} \)
\( \vec{F} = K \frac{(+e)(-e)}{r^2} \hat{r} \)
\( \vec{F} = -K \frac{e^2}{r^2} \cdot \frac{\vec{r}}{r} \)
\( \vec{F} = -K \frac{e^2}{r^3} \vec{r} \)
No comments:
Post a Comment
Please provide your valuable feedback. Students, Parents, Teachers.