Showing posts with label Conservation of Energy Numerical. Show all posts
Showing posts with label Conservation of Energy Numerical. Show all posts

To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass 1000 kg moving with a speed 18.0 km/h on a smooth road and colliding with a horizontally mounted spring of spring constant 5.25 × 10^3 N m–1. What is the maximum compression of the spring ? Example 5.9 Consider Example 5.8 taking the coefficient of friction, µ, to be 0.5 and calculate the maximum compression of the spring.

Example 5.8 To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass 1000 kg moving with a speed 18.0 km/h on a smooth road and colliding with a horizontally mounted spring of spring constant $5.25\times 10^3 Nm^{-1}$ . What is the maximum compression of the spring ? [NCERT Class 11 Example 5.8]


Example 5.9 Consider Example 5.8 taking the coefficient of friction, µ, to be 0.5 and calculate the maximum compression of the spring. [
NCERT Class 11 Example 5.9]

$5.25\times 10^3 Nm^{-1}$ corrected as $6.25\times 10^3 Nm^{-1}$