Each corner of a cube of side l has a negative charge, −q. The electrostatic potential energy of a charge q at the centre of the cube is ?
(a) \( -\frac{4q^2}{\sqrt{2\pi \varepsilon_0 l}} \)
(b) \( \frac{\sqrt{3} q^2}{4\pi \varepsilon_0 l} \)
(c) \( \frac{4q^2}{\sqrt{2\pi \varepsilon_0 l}} \)
(d) \( -\frac{4q^2}{\sqrt{3\pi \varepsilon_0 l}} \)
Answer : (d) \( -\frac{4q^2}{\sqrt{3\pi \varepsilon_0 l}} \)
\( U = \frac{-q^2}{4 \pi \varepsilon_0 \sqrt{3} L} \cdot 2 \times 8 \)
\( V = \frac{U}{q} \quad \quad E = \frac{F}{q} \)
\( V = \frac{U}{m} \quad \quad g = \frac{F}{m} \)
\( r = \sqrt{ \left( \frac{L}{2} \right)^2 + \left( \frac{L}{2} \right)^2 + \left( \frac{L}{2} \right)^2 } \)
\( = \sqrt{3} \cdot \frac{L}{2} \)
No comments:
Post a Comment
Please provide your valuable feedback. Students, Parents, Teachers.