In a parallel plate capacitor, the distance between the plates is d and potential difference across the plates is V. Energy stored per unit volume between the plates of capacitor is ?
(a) \( \frac{Q^2}{2V^2} \)
(b) \( \frac{1}{2} \varepsilon_0 \frac{V^2}{d^2} \)
(c) \( \frac{1}{2} V^2 \varepsilon_0 d^2 \)
(d) \( \frac{1}{2} \varepsilon_0 \frac{V^2}{d} \)
Answer : (b) \( \frac{1}{2} \varepsilon_0 \frac{V^2}{d^2} \)
\( \frac{U}{\text{vol.}} = \frac{\frac{1}{2} C V^2}{A \cdot d} \)
\( = \frac{1}{2} \cdot \frac{\varepsilon_0 A}{d} \cdot \frac{V^2}{A \cdot d} \)
No comments:
Post a Comment
Please provide your valuable feedback. Students, Parents, Teachers.