The electric potential at a point \( (x, y, z) \) is given by \( V = -x^2 y - xz^3 + 4 \). The electric field \( \vec{E} \) at that point is ?
(a) \( \vec{E} = \hat{i}(2xy) + \hat{j}(x^2 + y^2) + \hat{k}(3xz - y^2) \)
(b) \( \vec{E} = \hat{i}(z^3) + \hat{j}(xyz) + \hat{k}(z^2) \)
(c) \( \vec{E} = \hat{i}(2xy - z^3) + \hat{j}(xy^2) + \hat{k}(3z^2x) \)
(d) \( \vec{E} = \hat{i}(2xy + z^3) + \hat{j}(x^2) + \hat{k}(3xz^2) \)
Answer : (d) \( \vec{E} = \hat{i}(2xy + z^3) + \hat{j}(x^2) + \hat{k}(3xz^2) \)
\( \vec{E} = - \left( \frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \right) \)
\( = - \left[ (-2xy - z^3)\hat{i} + (-x^2)\hat{j} + (-3xz^2)\hat{k} \right] \)
No comments:
Post a Comment
Please provide your valuable feedback. Students, Parents, Teachers.