A 3 kg ball strikes a heavy rigid wall with a speed of 10 m/s at an angle of 60◦. It gets reflected with the same speed and angle as shown here. If the ball is in contact with the wall for 0.20 s, what is the average force exerted on the ball by the wall?

A satellite in a force free space sweeps stationary interplanetary dust at a rate (dM/dt) = αv. The acceleration of satellite is

Physical independence of force is a consequence of

A particle of mass m is moving with a uniform velocity $v_1$. It is given an impulse such that its velocity becomes $v_2$. The impulse is equal to

A 600 kg rocket is set for a vertical firing. If the exhaust speed is 1000 $ms^{−1}$, the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is

trial chatgpt codes

\[ \frac{F_{\text{electric}}}{F_{\text{gravity}}}\]



\[ \frac{F_{\text{electric}}}{F_{\text{gravity}}} = \frac{\frac{1}{4\pi \varepsilon_0} \cdot \frac{q_1 q_2}{r^2}}{G \cdot \frac{m_1 m_2}{r^2}} = \frac{(9 \times 10^9) \cdot \frac{(1.6 \times 10^{-19})(1.6 \times 10^{-19})}{r^2}}{(6.67 \times 10^{-11}) \cdot \frac{(1.67 \times 10^{-27})(9.11 \times 10^{-31})}{r^2}} = 2.4 \times 10^{39} \] \[ I = m_1 x^2 + m_2 (L - x)^2 \] \[ \frac{dI}{dx} = m_1 \cdot 2x + m_2 \cdot 2(L - x)(0 - 1) \] \[ \text{Minimum when } \frac{dI}{dx} = 0 \] \[ m_1 \cdot 2x = m_2 \cdot 2(L - x) \] \[ m_1 \cdot 2x = m_2 \cdot 2L - m_2 \cdot 2x \] \[ (m_1 + m_2) \cdot 2x = m_2 \cdot 2L \] \[ \Rightarrow x = \frac{m_2 L}{m_1 + m_2} \] 

\[ \frac{\Delta L}{L} = ? \] \[ \text{Given: } \text{Hypotenuse } = L + \Delta L, \quad \text{Opposite side } = x \] Using Pythagoras’ Theorem: \[ L^2 + x^2 = (L + \Delta L)^2 \] \[ L^2 + x^2 = \left( L \left(1 + \frac{\Delta L}{L} \right) \right)^2 \] \[ L^2 + x^2 = L^2 \left(1 + \frac{\Delta L}{L} \right)^2 \] Divide both sides by \( L^2 \): \[ 1 + \frac{x^2}{L^2} = \left(1 + \frac{\Delta L}{L} \right)^2 \] \[ \sqrt{1 + \frac{x^2}{L^2}} = 1 + \frac{\Delta L}{L} \] Using the approximation \( \sqrt{1 + x} \approx 1 + \frac{x}{2} \) for small \( x \), we get: \[ 1 + \frac{x^2}{2L^2} \approx 1 + \frac{\Delta L}{L} \] \[ \Rightarrow \frac{\Delta L}{L} \approx \frac{x^2}{2L^2} \] \[ \boxed{\frac{\Delta L}{L} = \frac{x^2}{2L^2}} \]



\[ \sum F = ma \]\[ 100 - \mu mg = ma \] \[ 100 - (0.5)(10)(10) = (10)a \] \[ 50 = 10\hspace{2mm}a \] \[ a = 5 \, \text{m/s}^2 \]