trial chatgpt codes
\[ \frac{F_{\text{electric}}}{F_{\text{gravity}}}\]
\[ \frac{\Delta L}{L} = ? \] \[ \text{Given: } \text{Hypotenuse } = L +
\Delta L, \quad \text{Opposite side } = x \] Using Pythagoras’ Theorem: \[
L^2 + x^2 = (L + \Delta L)^2 \] \[ L^2 + x^2 = \left( L \left(1 +
\frac{\Delta L}{L} \right) \right)^2 \] \[ L^2 + x^2 = L^2 \left(1 +
\frac{\Delta L}{L} \right)^2 \] Divide both sides by \( L^2 \): \[ 1 +
\frac{x^2}{L^2} = \left(1 + \frac{\Delta L}{L} \right)^2 \] \[ \sqrt{1 +
\frac{x^2}{L^2}} = 1 + \frac{\Delta L}{L} \] Using the approximation \(
\sqrt{1 + x} \approx 1 + \frac{x}{2} \) for small \( x \), we get: \[ 1 +
\frac{x^2}{2L^2} \approx 1 + \frac{\Delta L}{L} \] \[ \Rightarrow
\frac{\Delta L}{L} \approx \frac{x^2}{2L^2} \] \[ \boxed{\frac{\Delta
L}{L} = \frac{x^2}{2L^2}} \]
\[ \sum F = ma \]\[ 100 - \mu mg = ma \] \[ 100 - (0.5)(10)(10) = (10)a
\] \[ 50 = 10\hspace{2mm}a \] \[ a = 5 \, \text{m/s}^2 \]
Subscribe to:
Posts (Atom)